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Abstract

Three-dimensional supersonic viscous laminar 
ows over symmetric corners are

considered in this paper. The characteristic features of such con�gurations are dis-

cussed and an historical survey on the past research work is presented. A new

contribution based on a numerical technique that solves the parabolized form of

the Navier-Stokes equations is presented. Such a method makes it possible to ob-

tain very detailed descriptions of the 
ow�eld with relatively modest CPU time and

memory storage requirements. The numerical approach is based on a space-marching

technique, uses a �nite volume discretization and an upwind 
ux-di�erence splitting

scheme (developed for the steady 
ow equations) for the evaluation of the invis-

cid 
uxes. Second order accuracy is reached following the guidelines of the ENO

schemes. Di�erent free-stream conditions and geometrical con�gurations are con-

sidered. Primary and secondary streamwise vortical structures embedded in the

boundary layer and originated by the interaction of the latter with shock waves are

detected and studied. Computed results are compared with experimental data taken

from literature.
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1 Introduction

In the design of supersonic and hypersonic vehicles, the knowledge of the 
ow�eld in

the vicinity of interior corners (such as wing-fuselage or �n-fuselage intersections, and

box-type supersonic inlets) has a critical importance. In such areas, in fact, complex

shock/shock and shock/boundary layer interactions occur, inducing the separation of the

viscous layer and its reorganization in vortical structures dominating the shock layer.

The most outstanding consequence of such a dramatic change is an important increase in

heat 
uxes, skin friction coe�cients and pressures at the wall in correspondence with the

reattachment of the separated 
ow; transition, shock waves shapes and the e�ciency of

the air-intakes that might swallow such streams are also a�ected.

In the last 30 years, several theoretical studies, experimental tests and, more recently,

numerical simulations have been carried out in order to investigate the above mentioned

con�gurations. In this paper, the attention will be focused on that part of swept shock
waves/viscous layer interactions classi�ed as corner con�gurations, limited to the laminar
regime. A general discussion on the most important features characterizing such 
ow�elds

will be proposed and an historical survey of the research conducted in the past will be
made.
Finally, a study conducted by the authors using the computational 
uid dynamics as an
investigative tool will be presented. The numerical method solves the parabolized form of
the Navier-Stokes equations: advantages and limitations of such a physical modeling will
be discussed and the computational technique will be shortly described. The presence of

multiple vortical structures in the shock layer will be demonstrated and their interaction
with the wave patterns will be discussed. The e�ect of the local Reynolds number on
the conicity of the 
ow will be investigated. Moreover, obtained numerical results will
be compared, for purpose of validation, with analogous experimental data taken from
literature.

2 Supersonic corner 
ows

Supersonic corner 
ows belong to the family of swept shock wave/viscous layer interac-

tions, that in general can be found in many di�erent forms, but that in the simplest cases

are produced by any conical shock generator (not necessarily a wedge) mounted on a 
at

plate parallel to the 
ow. If the shock generator apex lies on the leading edge of the
plate, the con�guration belongs to the intake-type class, whereas, if it is downstream the

leading edge, it is called a �n-type con�guration. In the former case, the stronger shock
wave produced by the generator and the weaker shock due to the 
at plate interact and

impinge on the viscous layer that is developing on the opposite surface. In the latter case,
on the other hand, there is just one shock, since the one produced by the 
at plate can

be considered as vanishing.

The class of corner 
ows is usually de�ned in the literature as a particular case of intake-
type con�gurations, where the shock generator is a wedge and the 
at plate is substituted

by another wedge. In this case, there are two strong shock waves interacting and im-

pinging on the viscous layers. Depending on whether the leading edges of the wedges
are orthogonal to the freestream or not, the corner con�guration are called unswept or

swept. Moreover, if the two ramps are identical, the corner 
ow is de�ned as symmetric;
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Figure 1: Corner con�guration

asymmetric otherwise.

In �gure 1, a generic corner con�guration is shown and the geometrical parameters that
de�ne it are shown. In this paper, the attention will be mostly focused on symmetric
unswept corner con�gurations.

3 Flow�eld structure

In supersonic corner con�gurations the presence of the wedges generates two distinct
shock waves, whose interference, close to the corner, can produce two di�erent three-

dimensional shock con�gurations, called the regular re
ection con�guration and the Mach

disk (or irregular re
ection) con�guration (�gure 2). Both cases are characterized by the
ful�llment of the von Neumann conditions [1] at the intersection point (triple point), that
consists in imposing, using the Rankine-Hugoniot conditions, the matching of pressure
and conical de
ection in the unknown high pressure side of the interaction point. The

di�erence between the two con�gurations is that, in the case of the Mach disk, a further
shock is necessary to satisfy the von Neumann conditions. The Mach disk con�guration is

very common in supersonic corner 
ows. This fact is seen in �gure 3, taken from reference

[2], where the limiting curve separating regular and irregular re
ection con�gurations in
the case of symmetric unswept corners and inviscid 
ows is given in terms of the freestream

Mach number and of the wedge angles. It can be seen, for instance, that wedge de
ections
greater than 5o generate a Mach disk con�guration whatever the freestreamMach number.

For completeness, it is necessary to add that, in some occasions, the von Neumann con-
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Figure 2: Possible shock interaction con�gurations

2



Figure 3: Maximum wedge de
ections for regular re
ections (symmetric corners) [2]

ditions cannot be satis�ed, namely when the Mach number relative to the triple point is

decreased below a value dependent on the wedges angles. In this case (a third one), the

so called Guderley conditions [1] apply, that consist in inserting a Prandtl-Meyer expan-

sion at the triple point to satisfy the boundary conditions of equal pressure and conical
direction. In this last occurrence, however, the shock con�guration does not change sig-
ni�cantly, except at the triple point [3]. In this paper, only cases where the von Neumann
conditions apply will be considered and, in particular, the attention will be concentrated
on those situations that are characterized by the Mach disk shock con�guration that, as

already mentioned, is the most frequent.
The 
uid-dynamic pattern typical of the above mentioned 
ows consists of a system of
�ve shock waves. Two of them, which separate regions I and II in �gure 4, are generated
by the presence of the wedges; the remaining three are due to the irregular re
ection of
the previous two. Contact surfaces directed towards the symmetry plane are generated at

the triple points because of the di�erent levels of entropy produced by the wave system
on either side of the interaction. Shock waves separating regions II and IV impinge
on the viscous layer and are re
ected as expansion waves from the subsonic part of it.
Such expansion fans encounter at their time the slip surfaces and are transformed in
compression waves. Additionally, the interaction between the impinging shocks and the

viscous layer provokes the separation of the latter in the crosswise direction. Therefore, a

streamwise vortex develops, resulting as an obstacle to the cross
ow, and thus generating
a compression fan analogous to the one typical of two dimensional supersonic 
ows over
a ramp.

Depending on the geometrical and freestream conditions, the vortical structure can be

more or less complicated. In particular, with increasing the corner angle � and the sweep-
back angle � (see �gure 1), the separation is moved inboard and weakened. In both sides

of the symmetry plane, it could be constituted of one or two conical sinks and, in the lat-
ter case, a secondary vortex below the two sinks may appear. In any case, such separated

structures are characterized by the fact that the streamlines that detach from the wall are
not those that reattach. Vortical structures heavily a�ect the pressure and heat-
ux dis-

tribution at the wall, that reach very high values in correspondence with reattachments.

Conversely, a heat-
ux trough is usually present where separations occur. It is important
to notice that, in laminar regime, the shock-induced separation extends rather far from

the corner, a�ecting regions well outboard with respect to the position of the impinging

re
ected shock. This feature is a characteristic of the laminar regime; on the contrary, in

the turbulent regime, at �xed shock intensity, the separation is less extended, its in
uence
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Figure 4: Typical 
ow�eld con�guration

being in many cases limited to the vicinity of the embedded shock.

Between the primary vortex reattachment and the corner, a region of constant wall pres-

sure and decreasing heat 
uxes appears. This small part of the 
ow�eld, not dominated
by viscous/inviscid interactions, can be probably assimilated to a three-dimensional com-

pressible viscous layer, analogous to those studied theoretically at the end of the �fties
[4] [5].

The presence of Mach re
ections is not limited to corner con�gurations composed of two
wedges, but can easily occur, close to the leading edge, also if the wedges are substituted

by two 
at plates. It is well known, in fact, that the boundary layer developing on a 
at

plate appears as a compression surface to the incoming stream and deviates it upwards;
in the supersonic regime, this results in the formation of a leading-edge shock wave which

potentially is su�ciently bent to give rise to an irregular re
ection when interacting with

the shock generated by the opposite 
at plate; the subsequent 
ow�eld con�guration is
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Figure 5: Interpretation of the corner 
ow�eld given in ref.[11]

then analogous to the one described above.

4 A review of past research

In the following, a survey on research works concerning corner and intake-type con�g-
urations in supersonic and laminar regime will be made. Probably, only a part of the
pertinent literature is presented herein. Therefore, apologies are o�ered in advance for
errors of omission.
The �rst complete research work concerning the problem of shock/viscous layer inter-

action in a corner was due to Stainback [6] [7], who, between 1960 and 1964, made
experimental tests on an intake-type con�guration composed of two perpendicular 
at
plates at Mach 4.95 and 8, in laminar regime. In those years, theoretical investigations on
compressible supersonic 
ows in corners were conducted using boundary layer methods
and assuming uniform external 
ow conditions [4] [5] or considering inviscid solutions [8]

[9], but the e�ect of the interference of these two features was not known. Stainback
presented pressure and heat-transfer measurements characterized by peak values notice-

ably higher than those that could be expected from boundary layer methods. Combining

measurements with oil-
ow visualizations, he also argued, citing an idea originally due to
Bogdono� and Vas [10], that a shock-induced vortex system was possibly responsible

for pressure and heat-transfer variations in the vicinity of the corner.
In the second half of the sixties, following these very �rst e�orts, other experimental tests

and, for the �rst time, a numerical study, were conducted on corner 
ows. An important
contribution was o�ered byCharwatt and Redekopp, who, in 1967, published an article

[11] in which they presented surface 
ow visualizations, surface pressure measurements and

Pitot pressure surveys on symmetric and asymmetric corners at Mach numbers ranging

from 2.5 to 4 and in laminar regime. From those data they recognized the Mach re
ection

shock con�guration and also the presence of the compression fan due to the vortex system;
nevertheless, they attributed this last feature to inviscid e�ects (�gure 5), interpreting it

as a \ `transmitted' compressive region" and not mentioning the presence of vortices. In

any case, their pioneer work was of great importance for the e�orts to follow research,
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Figure 6: Sketch of the oil-
ow patterns visualized in ref.[15]

as it depicted for the �rst time the corner 
ow structure. In 1967, Stainback and

Weinstein [12], proposing a review of the corner 
ow problem, stated that a separation
and a reattachment were present in the vicinity of the corner owing to the interaction of the
shocks system with the viscous layer. They enforced their argument by presenting surface

ow visualizations at Mach 8 and 
ow �eld visualizations at Mach 20 (in helium) about

symmetric and asymmetric corners. In 1969, Cresci et al. [13] showed experimental data
and, for the �rst time, numerical solutions concerning a 90o corner constituted of two 
at
plates at Mach 11.2 and in laminar regime. The experiments consisted in surface pressure
and heat transfer measurements and in Pitot pressure and total temperature surveys; the

computation was performed using a \parabolized" form of the Navier-Stokes equations

(a �rst version of the PNS equations adopted here in the following). The comparison
was not quantitative because the computations, for reasons of time, had not been carried

out as far downstream as the experiments were performed; however, both experimental
and numerical results showed the Mach re
ection shock con�guration and qualitatively

similar patterns.

In the seventies, further experimental research and also extensive numerical studies con-
tributed to increase the knowledge on laminar supersonic corner 
ows. In 1971, Watson

and Weinstein [14] presented results on symmetric corners with various wedge angles

(0o, 5o, 10o) at Mach 20, in helium and in laminar regime. Correlating Pitot pressure

measurements and electron beam 
ow visualizations with heat-
ux measurements and

oil-
ow visualizations, they clearly recognized the presence of vortices in the 
ow�eld;
from surface visualizations, they also noticed the feather-like pattern typical of the sec-

ondary separation, but they attributed it to the presence of an embedded shock. The
same interpretation was given also by Keyes and Watson [15], who in the same period
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Figure 7: Interpretation of the corner 
ow�eld given in ref.[17]

conducted studies at Mach 19 in helium over symmetric and asymmetric corners (�gure 6).
In 1971 Korkegi, in his \Survey of viscous interactions associated with high Mach num-

ber 
ight", correlated the presence of peaks and troughs in the heat transfer distribution
with the existence of a system of vortices rather than one vortex alone and attributed the
appearance of pressure disturbances far from the corner (the compression fan) to sepa-

ration. In 1972, an article by West and Korkegi [16] showed experimental results on
a symmetric corner with wedge angle of 9:5o at Mach 3 with Reynolds number ranging
from 0:4 � 106 to 60 � 106, thus covering both the laminar and turbulent regimes; the
authors observed that in the laminar regime the e�ects of the shock/viscous layer interac-
tion (separation) protract far from the point where the inner shock impinges, while in the
turbulent case the separation is limited up to the impingement point area. In 1974, Wat-

son [17] presented the continuation of the work conducted previously byWeinstein and
himself [14], including the study of corners with blunted leading edges; from the obtained

results he hypothesized the presence of a secondary vortex embedded in the primary one

and, perhaps for the �rst time, he drew a sketch of the vortex system as composed of a
separation vortex sheet (which, as the author evidenced, is not the same that reattaches),

of a primary vortex where the high speed 
ow is attracted and of an embedded secondary
vortex (�gure 7). During the same year, Cooper and Hankey [18] published experi-

mental results obtained considering an intake-type con�guration at Mach 12.5 in laminar
regime; their aim was to \determine the 
ow�eld structure in a highly asymmetric axial

corner and associate areas of elevated heating rates with the accompanying 
ow�eld phe-

nomena". The presence of a separating vortex and of a secondary vortex was evidenced

again, though the interpretation of the separation pattern was uncorrect (�gure 8). The

authors also focused the attention on the inviscid 
ow�eld, showing and discussing the
presence of a single triple point. In 1975, Kipke and Hummel [19] published results

concerning extensive studies on unswept corner con�gurations in laminar regime that had

been conducted at the TU Braunshweig. Many experiments had been performed at Mach
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Figure 8: Interpretation of the intake-type con�guration 
ow�eld given in ref.[18]

12.3 and 16 varying the wedges angle and the corner angle, demonstrating that the sep-

aration intensity (and therefore heat transfer and pressure peaks in correspondence with

the reattachment) increases with decreasing the corner angle. Moreover, a very detailed
description of the 
ow�eld was given correlating pitot-pressure surveys, oil-
ow visual-
izations and heat-transfer and wall pressure distributions. In 1976, Korkegi published a
study [20] on the existing experimental data on three-dimensional skewed shock wave in-
teractions with both laminar and turbulent viscous layers. After having pointed out that

extensive shock-induced separation is possible also for turbulent 
ows, but needs larger
shock intensities with respect to the laminar regime, he described the general structure of
three-dimensional shock-induced separated 
ow regions starting from unseparated 
ows
up to extensive separated 
ows.
In the middle of the seventies, numerical studies were conducted byKutler [21], Shankar
et al. [22] and Anderson and Nangia [23], who all solved the conical Euler equations

using shock capturing techniques. Kutler [21], in particular, simulated the freestream
conditions of the West and Korgegi's tests [16], obtaining a satisfying agreement with
the highest Reynolds number experiments. In 1977, for the �rst time, Shang and Han-

key [24] published numerical results on a supersonic intake-type con�guration that had
been obtained solving the full Navier-Stokes equations using a time-dependent shock cap-

turing technique. They reproduced Cooper and Hankey's results [18], obtaining a good
agreement with surface experimental measurements and con�rming the presence of only

one triple point in the 
ow�eld but, owing to the coarseness of the grid used (the �ne one

was 8�32�36), the thickness of the viscous layer and thus the distance of the shock wave
system from the wall was underestimated. For the same reason, they did not capture the

secondary vortex, though its presence could be perceived from surface data; the authors
argued that the secondary separation could be caused by an embedded supersonic region

(created by the primary vortex) followed by a compression shock. In 1978, Hung and

MacCormack [25] were the �rst ones to obtain a numerical solution of viscous/inviscid

interactions for fully turbulent 
ows. The year after, Shang, Hankey and Petty [26]

reproduced numerically the West and Korkegi's [16] experiments including a transi-

tion model in their code. In 1980, Marconi [2][3] solved the conical Euler equations

using a shock �tting technique and compared his results with Kutler [21], West and

Korkegi[16] and Charwatt and Redekopp[11].

During the eighties, the production of studies concerning supersonic laminar corner 
ows

was rather scarce. Nevertheless, in 1984, results of a new extensive campaign performed at
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Figure 9: Interpretation of the corner 
ow�eld given in ref.[31]

the TU Braunshweig were published byM�ollenst�adt[27]. Experiments were conducted at
Mach 12.3 and in laminar regime on swept symmetric corner con�gurations with di�erent
sweep angles and corner angles and showed that, with increasing leading edge sweep, the
shock system is displaced towards the corner and the vortex system is less intense. Such
results were republished in 1987 by Hummel [28], together with those by Kipke and

Hummel [19] previously cited.
In 1991, Qin, Scriba and Richards [29] showed numerical results obtained solving the
locally conical Navier-Stokes equations and reproducing the experiments performed by
M�ollenst�adt [27]. A peculiarity of such results is that an additional couple of vortices was
captured close to the corner. In 1992, experimental investigations, described by Degrez

in reference [30], were conducted at the Von Karman Institute for Fluid Dynamics on

intake-type con�gurations at Mach 2 and Mach 6 in laminar regime. There, perhaps
for the �rst time, tertiary separation was observed in the Mach 6 case with wedge angles
greater than 6o. During the same year, Petzel and Hummel [31] presented experimental

results concerning an intake-type con�guration with a 8o wedge at Mach 12.6 in laminar

regime, showing the presence of a tertiary vortex on the 
at plate surface (�gure 9).
In 1991,Marsilio started numerical investigations on inviscid corner con�gurations at the

Politecnico di Torino. He solved the steady-state three-dimensional Euler equations using
a space-marching upwind �nite volumes method. In his paper of 1993 [32], he showed

that, if the shocks intensities were su�ciently large, the contact surfaces tend to roll up,

generating two spiral singularities. The most outstanding feature, however, was that such

vortices, initially symmetric, are not stable and move to an asymmetric con�guration,

which is stable. To verify the reliability of such results, comparisons were made with
other numerical experiments performed at the VKI solving the time-dependent conical

Euler equations: the resulting conclusions, published in [33] by Degrez et al., showed
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Figure 10: Comparison performed in ref.[33]

that asymmetric vortical solutions appear independently of the computational method

used (�gure 10), but are very sensitive to numerical dissipation.

5 Present contribution: methodology

The previously cited research work on inviscid supersonic corner 
ows initiated by R. Mar-
silio has been continued and has found its natural evolution in the investigation of viscous


ows. Now, the only completely correct way of solving numerically three-dimensional

compressible viscous 
ows is to integrate in time the full Navier-Stokes equations untill a
steady-state (if existent) is reached. This approach is a�ordable with current computer

capabilities, but, in particular if many grid points are needed to solve in detail complex

uid-dynamic features, it could be excessively CPU-time and memory requiring and thus,

in practice, una�ordable. In the case of supersonic steady-state 
ows, however, this prac-

tical di�culty can be partially circumvented with the aid of the approximate form of the
full Navier-Stokes equations known as Parabolized Navier-Stokes equations.

The advantage brought by the Parabolized Navier-Stokes (PNS) equations is that they

can be solved using a space-marching technique, a characteristic which allows to spend
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relatively short computation times and permits noticeable memory savings (if compared

with a time dependent method). Therefore, it is possible to reinvest CPU-time and

memory in more re�ned grids, thus permitting a very neat resolution of the 
ow�eld.

As a drawback, the parabolizing assumption requires the freestream Mach number to be

supersonic and the streamwise velocity always positive; thus, streamwise 
ow separations

are excluded, but cross
ow separations are permitted. Moreover, the streamwise pressure

gradient is altered in the subsonic part of the 
ow�eld [34], this fact implying that in that

region the contribution of the backward travelling signals is neglected.

In this investigation, the three-dimensional Parabolized Navier-Stokes equations are used.

Such a formulation is derived from the steady-state full Navier-Stokes equations with the

aim of obtaining a system of equations representing a well posed problem with respect to

an integration performed using a space-marching technique. At this point, any derivative

in the streamwise direction contained in the stress tensor is neglected, all viscous and
heat 
uxes in the streamwise direction are dropped and the pressure gradient in the
subsonic layer is properly altered. With such modi�cations, valid only for su�ciently
high Reynolds numbers, the Navier-Stokes equations are reduced to a set of hyperbolic-
parabolic equations [34][35].

The full Navier-Stokes equations can be written in integral conservative form in the fol-
lowing way:

@

@t

Z
V

WdV +
Z
S

FI � ~ndS +
Z
S

FV � ~ndS = 0 (1)

where V represents an arbitrary volume inclosed in a surface S with unit normal ~n positive
if directed outward.
System (1) can be reduced to non-dimensional form with the help of the following reference

values: L for length, �1 for density, T1 for temperature,
p
RT1 for velocity, RT1 for

energy per unit mass and �(T1) for viscosity. Therefore, from now on, the 
ow�eld
variables should be considered as non-dimensional. In particular, W is the hypervector
of conservative variables, tensor FI contains the inviscid 
uxes and tensor FV contains
the viscous 
uxes:

W = f�; �~q;EgT (2)

FI = f�~q; pI + �~q 
 ~q; (E + p)~qgT (3)

FV =

p

M1

Re1
f~0;��;�krT � � � ~qgT (4)

Quantities �, p and ~q = fu; v; wgT are respectively the local density, pressure and velocity;

E represents the total energy per unit volume:

E = �

 
e+

j~qj2
2

!
(5)

e is the internal energy per unit mass,M1 and Re1 are the freestream Mach number and

Reynolds number, 
 is the ratio of the speci�c heats and, �nally, I is the unit matrix.

Viscous stresses are contained in tensor � , with

�ij = �

" 
@qj

@xi
+
@qi

@xj

!
� 2

3
(r~q) �ij

#
(6)
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where �ij is the Kr�oneker's symbol. The viscosity is calculated via Sutherland's law:

� = T 3=2

 
1 + Tref

T + Tref

!
(7)

where

Tref =
110:4K

T1
(8)

and the thermal conductivity k is obtained according to the relation:

k =
�

Pr





 � 1
(9)

where Pr is the Prandtl number. Finally, the perfect gas relationship completes the set

of equations
p

�
= T (10)

In the parabolizing assumption, assuming the streamlines direction to be fairly close to
the x-axis, the components of the stress tensor necessary to evaluate the viscous 
uxes
are reduced to the following form:

� �xx = �2

3
� (vy + wz) (11)

� �yy =
2

3
� (2vy �wz) (12)

� �zz =
2

3
� (2wz � vy) (13)

� �xy = � �yx = �uy (14)

� �xz = � �zx = �uz (15)

� �yz = � �zy = � (vz + wy) (16)

Moreover, the x-component of the temperature gradient is neglected:

rT � = Ty~j + Tz~k (17)

The streamwise pressure gradient is splitted according to the technique suggested by

Vigneron, Rakich and Tannehill in reference [34]:

px = !px + (1 � !) px (18)

If only the �rst term of the RHS of equation (18) is retained and the second term is

considered as a source term, the set of equations containing only the convective terms is

hyperbolic, provided that

8>>>>>>>><
>>>>>>>>:

u > 0

! <

M2

x

1 + (
 � 1)M2
x

for Mx < 1

! = 1 for Mx � 1

(19)
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where Mx is the local Mach number in the x-direction. The �rst condition contained in

equations (19) prevents the PNS approximation to be used when the 
ow separates in

the streamwise direction. A short analysis of the second condition shows that ! is equal

to 1 when Mx = 1 and is null when Mx = 0; this means that the e�ect of the streamwise

pressure gradient is completely neglected at the wall and is more and more considered as

the 
ow approaches supersonicity. For Mx greater than 1 the e�ect of px will be entirely

taken into account and the value of ! will be unity. Of course, since a space-marching

integration is desired, the freestream Mach number will necessarily have to be supersonic.

Combining the cited assumptions, system (1) is �nally reduced to the following form:Z
S

F�

I � ~ndS +
Z
S

F�

V � ~n�dS =
Z
S

P � ~ndS +P0 (20)

where

F�

I = f�~q; pI� + �~q 
 ~q; (E + p)~qgT (21)

F�

V =

p

M1

Re1
f~0;�� �;�krT � � � � � ~qgT (22)

P = f~0;� (1 � !) pI��;~0gT (23)

and I� and I�� are scalar matrices with:

diag I� = (!; 1; 1) (24)

diag I�� = (1; 0; 0) (25)

Since viscous and heat 
uxes in the steamwise direction are dropped, vector ~n� contains
only the components in the y-direction and in the z-direction of the normal unit vector,
that is ~n� = (0; ny; nz).

Source term P0 must be added to make the integral formulation coherent with equation
(18), as noticed in references [36] and [37]. In fact, the corresponding integral form of !px
is:

!

Z
pnxdS =

Z
!pnxdS � p

Z
!nxdS (26)

Therefore, we have:

P0 = f~0;
;~0gT (27)

where 
 is a scalar matrix with

diag 
 =

�
p

Z
!nxdS; 0; 0

�
(28)

In the numerical approach presented here, explained in detail in reference [38], governing

equations are integrated in an explicit fashion and the physical domain is discretized
according to a �nite volume approach. The convective part of the equations (inviscid

uxes) is treated using a 
ux-di�erence-splitting technique with an approximate solution

of a Riemann problem at each cell interface conceived for steady 
ows [39], while di�usive

terms (viscous 
uxes) are calculated using a centered scheme and exploiting the Gauss

theorem in a discrete form. A second order accuracy is reached following the guidelines of

the Essentially Non Oscillatory schemes [40] with a properly limited linear reconstruction

of the solution inside each cell and at each step of integration. Presently, only inert gases
in laminar regime are considered, but the future addition of thermochemical or turbulence

models is certainly feasible.
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6 Present contribution: results

Unswept symmetric corner con�gurations have been investigated simulating the same ge-

ometrical and freestream conditions that characterize some of the experimental results

obtained by Kipke and Hummel and presented in references [19] and [28]. In particu-

lar, comparisons have been carried out in the following cases (see also �gure 1 for the

interpretation of the symbols):

# � � M1 Re1=m T1[K] Tw[K]

1 8o 90o 12.3 5� 106 45.3 300

2 8o 90o 16.0 1:7� 106 25.9 300

3 8o 120o 16.0 1:7� 106 25.9 300

with a Prandtl number of 0.72.
The geometry of case #1 has also been used to perform some further numerical experi-
ments, that will be shown in the following sections.

6.1 Salient features and comparisons with experiments

The �rst results to be presented are related to test case #1. The grid used was composed
of 100 � 100 cells, with about 50 cell s in the normal direction inside the shock layer.
A general idea of the computed 
ow�eld can be perceived from �gure 11, where cross
ow
streamlines, static pressure contours, Mach number contours and stagnation temperature
contours corresponding to a local Reynolds number Rex = 450000 (x=0.09 m) have been

plotted. Cross
ow streamlines are obtained projecting the velocity vectors on a sphere
centered at the intersection of the wedges leading edges; such a representation makes it
possible to visualize the cross
ow structure. Observing �gure 11a, it is possible to notice
the presence of the vortex system that characterize supersonic corner con�gurations; such
a separated structure will be analyzed in greater detail further on. The related wave

system is clearly shown in �gure 11b, where it is possible to appreciate the Mach re
ection,

the compression fan generated by the presence of the separated structure and the re
ection
of the impinging shock on the viscous layer. The latter interaction results in an expansion
fan that, interfering with the slip surfaces, generates a compression wave. In the vicinity of

the corner, a region of high but constant pressure is present. The Mach number contours

drawn in �gure 11c add to the previous pictures the slip surfaces and show the viscous
layer thickness; it must be stressed that the subsonic region is very thin, as demonstrated

by the fact that the contour corresponding to Mach 1 is almost undistinguishable from
the wall. Finally, the stagnation temperature contours are shown to demonstrate that the


ow that reattaches owns almost the whole total enthalpy of the freestream, since the low

energy 
ow coming from the viscous layer is entirely swallowed by the vortical structures.
In �gure 12a, the vortical structure that appeared in �gure 11a has been enlarged. It is

possible to see a primary separated structure composed of two foci and a simple secondary
vortex. The topological scheme is shown in �gure 12b, that should be compared with

�gure 12c. Particles belonging to the slowest part of the boundary layer are captured by

the right-hand side focus (F1A) of the primary separation, that starts in s1; this happens

up to a certain distance from the wall: continuing to move apart, faster particles are

encountered, that are captured by the left-hand side focus (F1B) of the primary separation;

14



Figure 11: Computed a)cross
ow streamlines, b)static pressure contours, c)Mach number

contours and d)total temperature contours for test case #1.

the entire viscous layer is thus swallowed by the vortical structure. Proceeding further

upwards, streamlines belonging to the inviscid part of the shock layer are captured again
by focus F1A; therefore, a saddle must exist between the two foci. Then, a small amount
of particles is entrained in the secondary vortex, whose focus is F2 and that is also de�ned

by the separation and reattachment lines s2 and r2 (see also the zoomed view in �gure

12d). Finally, a streamline reattaches in r1, closing in this way the primary separation;

such particles are coming from the inviscid part of the 
ow�eld, and thus own a great

amount of energy: it is for this reason that, when they stop at the stagnation point,
they increase noticeably their temperature, provoking an intense heat 
ux towards the

cold wall. Streamlines above the reattaching one are deviated towards the corner and
appear as a supersonic jet; in this region it is possible to appreciate other singularities,

that will be considered in a following section. By now, it is important to notice that the

separated structure just described is topologically correct. In fact, it is composed of four
half-saddles (separations and reattachments), three foci (two belonging to the primary

separation and one to the secondary vortex) and one saddle (between F1A and F1B).

Attributing a positive unit value to each focus and a negative unit value to each saddle

[41], the total gives zero, that means that the considered structure is self-consistent.
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Figure 12: a)computed cross
ow streamlines, b)topology of the separated structure,
c)limiting cross
ow streamlines, d)zoom of the saddle point region.

Up to now, only results concerning a particular cross section have been presented, but
nothing has been shown to give a general idea of the evolution of the 
ow along the corner.
Figure 13 �lls such a gap, displaying the limiting streamlines at the wall, which are the

numerical equivalent of oil-
ow visualizations; cross
ow streamlines have been placed
beside for a better comprehension of the picture. The separation and reattachment of the
primary vortex are well in evidence, and also the presence of the secondary vortex at the
wall can be perceived. It is possible to notice that streamlines are deviated before reaching

the separation line, thus generating an upstream in
uence line that is the forwardmost

extent of the interaction. It should be noted that the presence of the vortical structures
and of the related compression fan transports the three-dimensional e�ects due to the

corner at noticeable distances from it inside the shock layer, making it necessary to �x
rather ample external boundaries. If a square or rectangular grid is used, this results in

having a lot of points outside the shock layer. To avoid to waste CPU-time in computing

points for which it is known a priori that the freestream conditions apply, a procedure has
been implemented that detects the position of the shock layer at each step of integration
and solves the 
ow�eld only in the part of the domain containing it.

The same computed results presented above are now compared with analogous experimen-

tal data extracted from reference [28]. In �gure 14, Pitot pressure contours corresponding
to a distance from the leading edge of 0.09 m are shown. The contours shapes �t well,

and also the qualitative agreement is quite good. In fact, the wedge-shock position is

not exactly the same, as the computed one corresponds to a local slope of about 4:9o

with respect to the wedge, versus an angle of about 5:5o for the experiments (the inviscid
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Figure 13: Limiting streamlines at the wall and cross
ow streamlines for test case #1.

value should be 3:3o). Nevertheless, the maximum Pitot pressure value is 6.70 for the
computation, and experiments show their highest value on the contour corresponding to
6.42.
In addition, in �gure 15a, numerical and experimental static pressures at the wall are
overlaid, showing a satisfactory agreement. Here, as in the following, static pressures

at the wall have been adimensioned with pK , which is the pressure on a 2D ramp with
the same slope of the wedge. In �gure 15c, the limiting 
ow direction at the wall is
compared. The two curves are very similar close to the corner, as demonstrated by the
fact that the reattachment of the primary vortex is detected in the same position (note
that  = 0 indicates the presence of a separation or of a reattachment). Nevertheless,

receding from the intersection of the ramps, some not negligible di�erences appear. In
the computation, the secondary vortex is smaller and closer to the corner (though not

in such a great extent) and the separation of the primary vortex is located in a di�erent

position with respect to the experiments. Such discrepancies might possibly be due to the
fact that, approaching the lateral boundaries of the model, experiments could be a�ected

by side-e�ects or by interference with the tunnel boundary layer. On the other hand, it
should be also recognized the extreme sensitivity of the 
ow structure to the upstream

Mach number and to the uncertainty about its level and its uniformity along the tunnel
axis [42]. Finally, in �gure 15b, the heat 
ux at the wall is compared. As it could be

expected after the previous discussion, results are similar as far as the reattachment of

the primary vortex is concerned, with the peak of heat transfer in the same position and

showing a similar magnitude. Conversely, the location of the peak related to the secondary

vortex is di�erent, though the value is the same. Other discrepancies concern the fact
that, in the numerical results, we �nd no trace of the peak which, in the experimental

curve, is signaled at y ' 0:09. Last, it can be noticed that the computation predicts an

almost null heat 
ux locally at the corner, in contrast with the experiments; in this case

we think it is reasonable to agree with the numerical result, since very close to the corner
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Figure 14: Pitot pressure contours for test case #1: (a)experiment [28], (b)computation.

the temperature varies very smoothly, and on the other hand the measurement technique
used cannot approach too much to the corner itself.

In order to adequately address the accuracy of the computation, the results obtained
with the 100x100 grid are compared with those resulting from a 60x60 grid. The main
features of the 
ow�eld are unchanged, as it can be seen from �gure 16, where pitot
pressure contours are shown. The major di�erence is related to the secondary vortex:
with the �ner mesh it is fully captured, while with the coarser one its presence is just

sensed. A proof to this statement can be found in �gures 17 and 18. In �gure 17, cross
ow
streamlines are presented: in the left picture (60x60 mesh), the undulation of the cross
ow
streamlines suggests the presence of the secondary vortex, but in the right one (100x100
mesh), the vortex is well evident. In �gure 18, the 
ow direction at the wall is shown
again: it can be seen that in the case of the �ner mesh (100x100), a cross
ow reversal

is present at about y = 0:12, while with the coarser mesh (60x60) this feature does not
exist.
Test case #2 is characterized by a stronger viscous interaction with respect to test case

#1, since the Mach number is greater and the Reynolds number is lower. Thus, a thicker

viscous layer and a thinner inviscid portion of the shock layer are expected. Such features

are shown in �gures 19 and 20, where cross
ow streamlines and Mach number contours

are shown. In this occasion, the secondary separation has not been captured by numerical
tests, and also the experimental data that will be shown in the following do not help to

understand if it exists or not. Investigations of the 
ow direction at the wall, reported
in �gure 21, show that the limiting streamlines below the primary vortex tend to deviate

as if a secondary separation was incipient but still not developed, though it is not clear

whether this is the real physical picture or if a �ner grid would reveal the e�ective presence

of small vortex there. It is interesting to note that, in any case, the primary separation is

again constituted of two foci and one saddle, a con�guration that is topologically possible
also without the presence of the secondary embedded vortex.

In �gures 22a and 22b, Pitot-pressure contours at x=0.09 m are compared, showing a good

agreement. In �gure 22c, the pressure distribution at the wall is shown. Finally, in �gure
22d, heat 
uxes at the wall are compared; the agreement is good, though, as before, there

is a local di�erence at the corner and a second peak in the experimental results. The latter
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Figure 15: Wall pressure (a), heat 
uxes (b) and 
ow direction (c) at the wall: experiments
[28] and computations.

feature may be due to the presence of a region of high speed 
ow underneath the primary
vortex, where very steep total pressure gradients exist and which is possibly not properly
described by the numerics. It should be also noticed that no secondary reattachment (and
therefore also separation) seems to be shown by experimental measurements.
Test case #3 is characterized by a corner angle of 120o, while the remaining geometrical

and freestream conditions are those of test case #2. As, increasing the corner angle,
the embedded shocks weaken and pressure gradients are in general smaller, then also the

ow separation is less intense with respect to a corner of 90o. The greater amplitude of
the corner angle determines a lower pressure level in the corner region, so that vortical
structures are more inboard. From the cross
ow streamlines displayed in �gure 24, it

possible to see that also in this case the secondary separation is not present, though the
primary vortex is again splitted in two parts. Moreover, plots of the 
ow direction at the

wall do not indicate neither an incipient separation.

A comparison with experimental results is made in �gure 23: the agreement seems to be
good, though the presence of the second peak can be noticed in the experimental heat

transfer measurements, but not in the numerical results.

6.2 The e�ect of the local Reynolds number

Some numerical experiments have been performed on test case #1 to investigate the e�ect

of the local Reynolds number Rex on the conicity of the 
ow and on the development of

shock-induced vortical structures. Thus, the same upstream 
ow conditions and di�erent
lengths of the corner con�guration will be assumed. At the highest Reynolds numbers

the 
ow is likely to be turbulent and therefore the corresponding results presented here

are not realistic. Nevertheless, it was decided to show them just to demonstrate how the

ow�eld is modi�ed depending whether viscous or inviscid e�ects dominate.
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Figure 16: Pitot pressure contours computed with di�erent meshes: (a)60x60 mesh,
(b)100x100 mesh.

In �gure 25, wall pressure distributions corresponding to di�erent local Reynolds numbers
have been plotted. Pressures have been dimensioned using the corresponding inviscid
value and distances using the distance x from the leading edge. If the 
ow was conical, the
six graphs shown here should overlay, but this is not the case. It should be noticed that
test case #1 is characterized by a hypersonic freestream Mach number. Thus, viscous

interaction e�ects are rather strong, as evidenced by the graphs, that show that wall
pressure distributions far from the corner, where the 
ow is essentially two-dimensional,
are higher, for low local Reynolds numbers, than the inviscid value. Therefore, the whole

ow�eld is not conical as long as strong viscous interaction e�ects are present.
Moreover, also the structure of the vortex system seems to change with increasing the

distance from the leading edge. For low local Reynolds numbers, the 
ow is dominated
by transport phenomena. Thus, the viscous layer is very thick and occupies a large

portion of the shock layer (�gures 26 and 27). According to numerical results, only the

primary separation is present, splitted in two parts as usual (�gure 28). Proceeding to
move downstream, the secondary separation appears, as already shown in �gure 12. For

even larger local Reynolds numbers (that in e�ect are likely to correspond to turbulent
conditions), the primary separation appears to be composed of three foci (�gure 29), and

the embryo of the vortical structures that characterize the Euler solution [32] can be
perceived close to the symmetry line (�gure 30).

7 Conclusions

Despite the simplicity of their geometry, supersonic corner con�gurations represent a

rather complex 
uid dynamic test case, as, owing to the mutual interaction between

inviscid and viscous e�ects, important vortical structures that strongly characterize the
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Figure 17: Computed cross
ow streamlines: (a)60x60 mesh, (b)100x100 mesh.


ow�eld are created. Since the very �rst studies, that started about 35 years ago, the
most important 
ow�eld features are, at this time, known and understood. Concerning
the laminar regime, however, it is still not very clear which is the sensitivity of the 
ow�eld
features to the geometrical and upstream conditions, that seem to in
uence very much

the extension and the complexity of the vortical structures. It is the hope of the authors
to have suggested, through this paper, that the computational 
uid dynamics, strictly
tied to experimental tests in a process of mutual validation, could be considered as a very
useful tool to conduct such studies in a reasonable time.
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Figure 18: Flow direction at the wall: experiments [28], 60x60 mesh and 100x100 mesh.

Figure 19: Computed cross
ow streamlines for test case #2.

Figure 20: Computed Mach number contours for test case #2.
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Figure 21: Test case#2: 
ow direction at the wall.

Figure 22: Test case #2. Pitot pressure contours: (a)experiment [19], (b)computation.

Wall: (c)pressure, (d) heat transfer.
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Figure 23: Test case #3. Pitot pressure contours: (a)experiment[19], (b)computation.
Wall: (c)pressure, (d) heat transfer.

Figure 24: Computed cross
ow streamlines for test case #3.
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Figure 25: Test case #1: wall pressure distributions for di�erent local Reynolds numbers.

Figure 26: Computed pressure contours for test case #1 at Rex = 85000.
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Figure 27: Computed Mach number contours for test case #1 at Rex = 85000.

Figure 28: Computed cross
ow streamlines for test case #1 at Rex = 85000.

Figure 29: Computed cross
ow streamlines for test case #1 at Rex = 4250000.
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Figure 30: Computed cross
ow streamlines for test case #1 at Rex = 6000000.
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